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ABSTRACT / - I I
In this paper we study the hole pressur problem for plane, steady, creeping shear flows

of a JohnsoniSegalman model. To correctly apply the theory ofHigashitani, Pritchard, Baird &
Lodge (HPBL), we start with a modified hole pressure relation (MHPR) and we simulate the
hole pressure measurement by FEM and multi-mesh extrapolation techniques. The path integrals
of MHPR & HPBL are evaluated and a full instrument simulation is conducted.

An encouraging agreement between the simulated hole pressure and the analytical prediction
is found, within the computationally-accessible range of De < 1, which supports the postulates
about the possible error cancellation in MHPR and the validity of HPBL for J-S fluid. This
numerical investigation also corroborates the evidence, given by the independent experiment
and other numerical work, that A can be predicted via the HPBL equations to a sufficient
approximation to be of practicalj/se.
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1. Introduction

The need to measure the first normal stress difference N1 for viscoelastic liquids has
been well recognized in recent years in connection with some important industrial applica-
tions. A promising experimental method to measure the elasticity of liquids was proposed
and successfully implemented by Lodge et al. to estimate N1 from measured hole pressure
PH for some polymer liquids at various shear rates [1-3]. This method is based on the
combination of hole-induced nontrivial curvature of stream surface and base-shear-flow-
induced N1 field. The data analysis of this method depends on the use of the equations of
Higashitani, Pritchard, Baird and Lodge (HPBL) whose derivation involves a number of
basic assumptions. Extensive discussion of these assumptions can be found in references
[1,4,5]

A paradox that had puzzled people in this field for many years, was that at least
two of the key assumptions in the HP's original treatment [11] were known to be invalid
while the independent experimental tests [1-3,6,7] and published numerical results [4,8-10]
have indicated that the HPBL equations are valid to a sufficient approximation to be of
practical use. This paradox has been resolved recently by Yao and Malkus [5].

To correctly apply the HPBL theory Yao and Malkus [5] started with a modified hole
pressure relation (MHPR) in path integral form. This MHPR contains an extra term
which was neglected in Higashitani and Pritchard's original work [11]. By studying the
MHPR in streamline co-ordinate formulation Yao & Malkus discovered a fortuitous error
cancellation phenomenon in the derivation of HPBL eqations and analytically proved the
exact error cancellation for second-order fluid and for Tanner's viscometric model (under
some assumptions). It is this error cancellation phenomenon that provides a complete
theoretical explanation for the paradox between an apparently flawed derivation and the
fortunate success of the HPBL equations.

The proof of the exact error cancellation given by Yao & Malkus in [5] confirms
theoretically the validity of HPBL equations for second-order fluid and Tanner's visco-
metric model. For other non-Newtonian constitutive models, such as the Maxwell and
the Johnson-Segalman (J-S) fluids, the analytical proof of the similar error cancellation
is still not available. However our numerically-simulated hole pressure results favor this
postulate and suggest that the error cancellation phenomenon may be also true for the
Maxwell and J-S fluids. Extensive numerical investigations of the hole pressure for the
upper-convected Maxwell model have been given by Malkus &: Webster in [9] and Yao in
[4]. Their investigations corroborate the independent experimental evidence that N1 can
be predicted via HPBL equations to a satisfactory degree of working rheological accuracy.

In this paper we study the hole pressure problem of a modified J-S fluid. The primary
goal of this work is to investigate the possible error cancellation phenomenon in the MHPR
numerically and to test the validity of the HPBL equations for the J-S model.

The outline of this paper is as follows. In Section 2 we review the basic equations
of J-S fluid; in Section 3 we discuss the correct way to derive the HPBL equations, the
possible error cancellation in MHPR and the theoretical predictions of hole pressure; in
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Section 4 we present our numerical simulation results of PH and NI; finally in Section 5
we summarize our conclusions.

2. Basic Equations
Assume the body force is negligible. Then the basic equation governing the motion of

an incompressible, isothermal fluid is given by

P( +V.VV) =V.T (2.1)

where p is the fluid density, v is the velocity vector, and T is the Cauchy stress tensor.
In this paper we shall confine our attention to a particular constitutive equation, the

J-S model [12] which is actually a nonlinear generalization of the classical Maxwell fluid
model. It accounts for the non-affine deformation of Gaussian network by introducing a
slip parameter a. Recently there has been growing interest in the modifed J-S model
with added Newtonian viscosity because it can be used for modeling the non-monotonic
stress-strain-rate relation and the spurt phenomenon [13,14]. In this hole pressure study,
however, only the monotonic stress-strain-rate relation is concerned.

The constitutive relation is given by [13]

T = -pI + 277D + Z (2.2)

where p is an isotropic pressure (which is determined from the incompressibility condition);
7 is the coefficient of Newtonian viscosity; E is the non-Newtonian extra stress; and the
strain rate tensor D := [Vv + (Vv)T]/2 is the symmetric part of the velocity gradient Vv,
which has components [Vv]ij Ovi/Ox j .

The extra stress is specified by constitutive law of either differential form or integral
form. For the differential constitutive law we adopt the same notation as that used in
[13,141, i.e.

+ E = 2D (2.3)
At

where
---- 9 := + v. VE + E(fl - aD) + (1 - aD)TE (2.4)

At a
is the convected time derivative of E with parameter a. pt is an elastic shear modulus; A is
a relaxation rate; and the vorticity tensor 0 := [Vv - (Vv)T]/2 is the antisymmetric part
of Vv.

In the integral-form of J-S model the extra stress is given explicitly by

= PO J [E7'(r)E7 T(r) - I] e-(t-r)/T dr (2.5)

where po is the zero shear-rate viscosity, T = 1/A is the relaxation time and we choose t = 0
for steady flows. EI(r) is the effective deformation gradient tensor measuring the strain at
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historical time r relative to the state at t, i.e. Et(r) = 8x'(r)/Ox(t) with x'(r) and x(t)
being the spatial co-ordinates of the particle positions at time r and t, respectively.

It can be proved that equations (2.3) and (2.5) are equivalent.

3. Theoretical Predictions of Hole Pressure

Consider steady, incompressible, isothermal, creeping shear flows between parallel
walls which are at a separation h. One wall contains a hole whose cross section is a
transverse slot (of narrow dimension w parallel to the main flow direction). A transducer
centered at point a on the bottom of the hole records an average pressure Pa,,v, exerted
by the fluid. When the hole is deep enough and the inertial effect is negligible, we have
Pa,av = Pa, where Pa - 22 la is the point value of normal thrust at a. Another transducer
mounted flush with the opposite wall with center on a location b on the hole centerline E
records an average normal thrust Pb,av. This arrangement is shown schematically in Figure
1. For slow flows of Newtonian fluids, it is well known that the two readings, Pa and Pb
(or Pb,av) are the same, i.e. no error is introduced by this procedure. For non-Newtonian
fluids, by contrast, the difference between P. and Pb (or Pb,av) can be significant. This
difference is called hole pressure in the literature and is defined in two ways in [1]. One
way is to define the point (theoretical) value of hole pressure by

P Pb - Pa = -(T22lb - t221a) (3.1a)

where Pb = -4 22 lb is the point value at b. Another way is to define the average (measured)
value of hole pressure as

P* = Pb,a, - Pa . (3.1b)

Definition (3.1a) is convenient for theoretical study while (3.1b) is close to real rheological
measurement. In this paper, however, we shall consider the point (theoretical) value of
hole pressure only. Wc shall use PH, instead of P**, to denote the point value of hole
pressure defined by (3.1a). The physical explanation of the existence of hole pressure PH
can be found in references [15,16,1].

3.1 Modified Hole Pressure Relation (MHPR)

As pointed out by Malkus & Yao [17,5], there are two key flaws in the HP's original
work [11]. They are

(i) The assumption of OTilla/q = 0 on (L is incorrect, due to the excess pressure rise
phenomenon observed in [4];

(ii) The assumption of viscometric flow on T, is not true, therefore the change of variable
from q2 to a.. in getting the rheological space integral (3.10) is invalid in theory.

In order to correctly apply the HPBL theory we need to start with the modified hole
pressure relation [17,5] in path integral form:

P(= 1 + t' 12 (3.2)
PH= I + 2h 2 dq2  (3.2)

2a; hi 8q, h2 Oq2 / 2T12
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H - o q. -!WJ P 2 2 1a

Figure 1. Schematic illustration of hole pressure mea-
surement and definition of streamline coordinate system
for planar creeping flows over a transverse slot.

where qj (i = 1, 2) are the strear line co-ordinates defined in Figure 1, hi (i = 1, 2) are
the metric factors, and Tij (i, j = 1,2) are the physical components of Cauchy stress in
streamline co-ordinates. Here we use PH to denote hole pressure, predicted by MHPR
and to distinguish with the HPBL prediction, PH. In (3.2) the two key flaws have been
corrected by including the stress gradient term (1/hj)T1 jI/0q and by assuming t 11 - T22

be generally non-viscometric on

Some basic mathematical properties of MHPR, including the singularies and existence
of the path integral, have been studied by Yao & Malkus in [5]. Under certain conditions
their conclusion theoretically guarantees the existence of the path integral (3.2).

3.2 Error Cancellation and HPBL Equations

Starting from the differential-form constitutive equation (2.3), using the similar or-
thogonal curvilinear streamline co-ordinate formulation as that was developed in [4,5] and
noting the assumed symmctry [5] of velocity field about C, we obtain the physical compo-
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nents of the extra stress on the hole centerline T, for the J-S fluid, namely

~1 + 1(1 -a 2 )T 2 j~2  (1 aqL

a 0, 22 Ti il OE12
-(1+ a)- q jh-9q, (3.3)

Ell - E22 2TjE 12 - Til a(E11 _ E22)
aq,

(3.3) contains streamwise derivatives 1 8E1 , 8 2 and -- In addition, we alsoh, aqi I h, aq, hl aq,
need -L aT, in evaluating MHPR. According to our numerical results [4] these derivatives

are in general non-zero on the hole centerline C. Equation (3.3) indicates that the flow in
general is not strictly viscometric on and in the vicinity of CL.

For convenience we rewrite (3.2) as

PH = PH + PH (3.4)

where

PH 2= Ti I1 -T22 1 OTl 2h~
212 h2  h2dq2 (3.5)P q 2T 2q

P2T 2  1i 0T 1 h2dq2 . (3.6)

qhT q,

The P4 term is similar to the corresponding HPBL equation (but not equal as we shall
see) and the PH is the error term caused by neglecting the stress gradient (1/h)T9t 1 8/Oql
in the derivation of HPBL equations.

When expression of El -l22 in (3.3) is inserted into (3.5), one obtains

2~ N, 1 6 2iE3q P3

P 'q HI 12 q2 - PH (3.7)

where N1 = 2TE 12 is the viscometric part of E" - E22 [4] and

Pq=T( fil a(E - E22) 1 0T (20qa hi Oql 2T12 
0 q2 dq2 .(38)

It is easy to see that if the flow is viscometric on E, then O(E1 - 2 2 )/aq, = 0 and
hence PH = 0. Therefore PH can be considered as the error term introduced by the
viscometric flow assumption. Our numerical results show that P?, is non-zero in general
due to the perturbation of the pressure hole. Furthermore, we shall presume that the
HPBL prediction is still valid for the J-S model, i.e.

aq t22d I N at2~
PH=-I dq2= f dq2 =PH (3.9)

2q; a q2 q; 2T12 aq2
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where the HPBL prediction of PH is given by

PH = N, -.d (3.10)
2 2-r

Equation (3.10) is the academic form of the HPBL equation. Here 0, is the disturbed
wall shear stress at point q2 shown in Fig. 1.

Then by using (3.9) and following the way similar to the case of second-order fluid
[4,5], one can verify the following relation

P2H = PH (3.11)

also holds for the J-S fluid. This suggests the possible error cancellation in the MHPR,
namely

2 L+P' I d, - H + P, (3.12)PH PH + H 0 2r
-0

and the equivalence of MHPR and HPBL for J-S fluid. Up to now we have not been able
to give a rigorous proof of (3.12) for J-S fluid. To test (3.12) we shall resort alternatively
to the numerical simulation technique.

Differentiating bothsides of (3.10) with respect to aw and approximating o ", by .,
No by Nl, yields the practical form of HPBL equation

* dPj (3.13)

where ao is the undisturbed wall shear stress. (3.13) can be considered as a good approx-
imation to the precise differentiation of (3.10) if law - a'I is small. According to Malkus
& Webster [91, law - °' can be minimized by proper die design with h/w > 1. The
full instrument simulation results presented in [4] and in this paper also show that the
difference by using either aw or a, in predicting N, is rather small.

The HPBL equations also consider the inertial effect correction [1,2]. Since we are
interested only in creeping flows (Re ; 0) the inertial correction term will be neglected in
this paper. Thus in the present paper we are actually referring to (3.10) and (3.13) as the
HPBL equations.

3.3 An Analytical Prediction of PH

In reference [18] Yao & Malkus employed an analytical solution technique to predict
the hole pressure for J-S fluid. By substituting N1 = _ 7 = ej + j into (3.10)
and carrying out the integral by changing the variable from r to j, they obtained an
analytical prediction of PH, namely

00 0)

PH =I !dr = - -5j rd

-la 1+6+ ln(l+i2)+(l+E)ln(l+f+ 2 )  (3.14)
a2 11 +j 2 0



where j,' is the disturbed shear strain rate j on the top wall opposite to the hole, parameter
e = r/p. Note that in (3.14) j, r, N 1 , oo and P = PH/P are all in nondimensional
form.

There are several important aspects regarding (3.14) that need to be emphasized. It
is seen from (3.14) that PH depends on the value of ratio e. Figure 2(a) & (b) plot the
non-dimensional (1 - a2 )PH/ vs. -j, and PH/Ni vs. 4j, for e = 0, 1/8, 1/4, 1/2, 1,
respectively. We can also see that the value of PH increases with increasing of e, (i.e. when
more Newtonian viscosity is added).

We know that both PH and No,, are equal zero when "7, "* 0. However the limit of
their ratio, PH/N°,,, is nontrivial. It can be verified that

lim PH/NO = 1/4. (3.15)

This result is independent of e and can be easily seen from Fig. 2(b). (3.15) shows that
the Tanner's second-order fluid result, PH = No,/4, is still a good approximation for very
slow flow (small Deborah number) of J-S fluid. By calculating limi-_. PH it is easy to
verify the following asymptotic formula

P alnt/I1 + (j)2 + 1 +(1 + e)In--] (3.16)

for very large De (or oW).
It is also easy to analytically verify the following differential form HPBL relation holds,

namely,
200 dPH 20 dPH djo (3.17)

w d,. Wcfi.

where awN = (1o + io /[1 + (io0)2], NO, = 2(iyo)2/(1 - a2)/[1 + (:r°)2] and PH = pPk is
given by (3.14).

4. Numerical Simulation

4.1 The FEM Solutions of PH

The FEM program used in our numerical simulation is FLUCODE, which is im-
plemented with the single-integral form constitutive equation and the particle tracking
technique. Early versions of FLUCODE were originally developed by Malkus and his
co-workers [19]. The version we used in this work is an enhanced and optimized version
developed by the first author [4]. One of the improvement significant for hole pressure sim-
ulation is the accuracy improvement of pressure, stress and stress-like variables of FEM
solutions at boundary, which is accomplished by thc boundary node correction technique
[4,20].

The plane Couette base flow as well as the Poiseuille base flow are considered in our
numerical simulation. The geometrical parameters, defined in Figure 1, are chosen as
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Figure 2.

Analytical prediction of hole pressure error, P11, of J-S fluid for various

values of E. (a) Dimensionless (1 - a (1 - a2 )HpV.7~

De(l - a2)1/2; (b) PH/IN, vs. w
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h = 1, w = 0.5, d = 2 and q = 2. For J-S fluid we hope to get nearly symmetric solutions,
but will not impose this. Thus the whole domain is used for the FEM computation.

As for the computational boundary conditions, we specify velocity profiles both at inlet
and outlet for the two base flows, plus specifying the upper plate velocity for the Couette
base flow. The no-slip boundary conditions are imposed on the remaining portions of the
boundary. The fully developed velocity profiles are computed by an analytical solver based
on the solution technique and formulation developed in [18]. The FEM computation for
mesh 1, 2, 3 was done on a VAX 3100 machine and the computation for mesh 5 was carried
out on a Cray X-MP/48 at the San Diego Supercomputer Center.

Five FE meshes are used in the simulation. The first four meshes are designed for
multiple-mesh extrapolation [9]. The crudest FE mesh in this group, i.e. Mesh 1, is shown
in Figure 3. If Ax1 is the typical element size of mesh 1, the subsequent meshes have
the element sizes Ax 2 = Axl/2, Ax 3 = Ax,/3 and AX4 = Axi/4, respectively. The last
mesh, mesh 5, is specially designed for numerical evaluation of the MHPR and HPBL path
integrals. It is the finest one we have ever used on Cray-XMP/48 and is shown in Figure
4.

The material parameters we used are: a = 0.8, A = 1, 71 = 1/8 and U = 1, which
leads to c = 1/8. Five Deborah numbers, i.e. De = 0.1, 0.25, 0.5, 0.75, 1.0, were used.
To improve the accuracy of FEM solutions we take IPa I = I - T22 (a)I, the pressure at the
bottom of the hole, as the convergence control variable in determining when to terminate
the non-linear iterations for some of the computations at high De. This convergence
criterion is proposed by Malkus and is implemented in FLUCODE in the following form

(P.. -I P i < 10-"n (4.1)

where P.' is the i-th iteration solution of Pa and n = 4 is used in our computation.
The analytical prediction of the hole pressure PH, is given by equation (3.14) ex-

pressed in terms of the disturbed hole shear strain rate, "° The raw FEM solutions of
PH, the HPBL predictions numerically evaluated based on the mesh 5, as well as the ex-
trapolated results of PH via meshes 1, 2, 3 are compared with the analytical predictions.
The numerically-simulated Pl for Poiscuille base flow are summarized in Table 1 and
shown in Figure 5 & 6, respectively. It is perhaps necessary to emphasize that although,
theoretically, (3.14) is an analytical prediction, in practice we still cannot get the exact
values of PH. This is simply because prediction (3.14) depends on j"w, while the precise
value of "0, is in general unknown for a given base flow. Here the best we can do is to
use the most accurate "°, numerically available for predicting PH. In Table 1 the "0, is
computed by the three-mesh extrapolation based on meshes 1, 2, 3.

4.2 Evaluation of HPBL and MHPR Path Integrals

A major focus of our numerical work is the investigation of the validity of the HPBL
equations and the phenomenon of error cancellation in MHPR for J-S fluid. First it is
worth noting that the MHPR path integral (3.2) is based on the streamline co-ordinate
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formulation, the stresses involved are the physical stress components in streamline co-

ordinates and e/Oq, is he streamwise derivative. While the FEM solutions obtained from

FLUCODE are in the form of Cartesian co-ordinates. An important fact used in our com-
putation is that for the assumed symmetric flow field the streamline co-ordinate systems on

are orthogonal curvilinear systems and the co-ordinate curves are tangential to the local
rectangular Cartesian co-ordinate axes. As defined in reference [21], the physical compo-

nents of a vector or second-order tensor at a point P relative to a system of orthogonal

curvilinear co-ordinates are simply the Cartesian components in a local set of Cartesian
axes tangent to the co-ordinate curves through P. Therefore the physical components of
fi and T are simply the Cartesian components given by the finite element solution.

The differentiation with respect to q2 is easy, because we can define q2 = x 2 , h 2 = 1
and there is no direction change for q2 -axis on C. Consequently we have the finite difference

formular for -L onC

1 MT 2  80 1 2  , O 12 (0'X I) -i '1 2 (0 X) (4.2)

h2  q i+1/2 - Ox2 J~i+1I2 x +(.2q2  2

where 0a12 is the Cartesian shear stress component and x2 is the x 2-co-ordinate of node i.

However the computation of the streamwise derivatives is much more complicated. As
a matter of fact, the computation of (1/h1)T 11/0q1 , etc. is the most difficult part of this
investigation; it has turned out to be the most crucial part of the work, too.

To numerically verify the validity of the HPBL equations and the error cancellation

phenomenon in MHPR, we compute HPBL, PH4, Pk2 & Pk separately. The numerical
procedure used for computing the streamwise derivatives and for evaluating the path in-

tegrals are very similar as that described in Section 4.6 of [4]. There are only two major

differences between this paper and the Section 4.6 of [4]: namely the symmetry conditions

used in there are not valid here and the Cartesian stress components are first transformed

into streamline co-ordinate stress components before applying the finite difference formula

along the streamline.

The HPBL prediction is evaluated by using the following path integral form:

PH=J N, aT1 2  (4.3)
q2 2t 1 2 N 2

Here N, = 2T-j'E 2 is only the viscometric part of TI - T22 given by (3.3) and the
trapezoidal rule is used for the numerical integration.

The evaluation of the path integrals of MHPR and HPBL is based on our finest FE
mesh, the mesh 5 shown in Figure 4. The numerical results of these path integrals and
their relative errors are summarized in Tables 2 & 3 for Couette and Poiseuille base flows,

respectively.

In reference [22] Baird, et al. have reported a partial self-cancellation phenomenon

in evaluating the HPBL path integral (4.3). They found that the contributions to the
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HPBL integral from the region below the channel center cancel out. Their observation is
primarily based on the experimental data in Poiseuille base flow. Here we find the similar
partial self-cancellation in the HPBL path integral based on the numerical solution of J-S
fluid.1 To study the variation of HPBL path integral along (E, we define

Y N, 1

PH(Y)= f1-i 2 dq 2  q2 < y < q' (4.4)
J 2t'12 q2

as a function of parameter y and plot the curve PH(y)/PH(q') vs. y. Note that PH -

PH(q6) and y = 0 is the center of channel. Figure 7(a) shows a PH(y) curve for Poiseuille
base flow at De= 0.25. We can see clearly from Figure 7(a) that PH(y) " 0 at y = 0,
which indicates the self-cancellation of HPBL integral on the interval from the bottom
of the hole to the center of the channel. The effective contribution to HPBL integral
only comes from the part between the channel center and the top wall where the flow is
essentially viscometric. However, this partial self-cancellation phenomenon only happens
to Poiseuille base flow; it is not true for the Couette base flow. A typical PH(y) curve
for Couette base flow at De=0.25 is shown in Figure 7(b) which looks quite different from
Figure 7(a). It seems that for Couette base flow the most effective contribution to HPBL
comes from the part around the mouth of pressure hole.

4.3 Predictions of N, - Full Instrument Simulation

The direct application of hole pressure study is the prediction of N 1 . In reference [91
Malkus & Webster performed a full instrument simulation to predict N, for a Maxwell
fluid. Here we conduct a similar simulation for J-S fluid.

In the real rheometric measurement, as done by Lodge & de Vargas in [3], the slit die
version of the well-known Weissenberg equation [23]

iw - 2 + dlnQ (4.5)

wh 2 ( dlnaw)

was used to evaluate the shear strain rate ,, at the die wall from the volume flow rate Q.
Here w denotes the width of the die cross-section and a is the wall shear stress. When
simulated by plane flow we can simply take Q/w as the plane flow rate. By using the
central difference formula in (4.5) we obtain its finite difference version

i,I1/2 1 [2(Q, + Q2) + Q(a + U2) (4.6)
h2 O-2 - O 1

With iw11/2, the viscosity function 7(7) can be predicted via

7(wl1/2) ' (a" + o2)/(2"jw11/2) • (4.7)

1 Note that this partial self-cancellation phenomenon also happens to the second-order

and Maxwell fluids.
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The numerically predicted viscosity is shown in Figure 8.
Following Malkus [9], we take shear stress at the wall to be the independent parameter.

Central differences are employed to compute the derivatives and other quantities at shear
stress &, namely

a =(a, + a 2)/2,

PH(a) [PH(i) + PH(2)]/2, (4.8)

dPH(a)/da -[PH(a 2 ) - PH(al)I/Aa,

Q(a) -[Q(Orl) + Q(O2)]/2.

Using the above approximations, equation (3.13) becomes

N (a) - 2a[P(2)- PH(a,)]/Aa. (4.9)

The results of full instrument simulation using (4.9) are presented in Figure 9 and in Table
4, respectively.

5. Conclusions

The numerical results presented in Section 4 show an encouraging agreement between
the numerically-simulated hole pressure and the analytical prediction (3.14) for the modi-
fied J-S model within the Deborah number range that is computationally accessible. This
favors the postulates we made in this paper, namely the error cancellation in MHPR
seems to hold and the HPBL equations are still valid for the J-S fluid.

The error cancellation relation, PH = PH + PH, has been numerically verified for both
Couette and Poiseuille base flows with reasonable degree of accuracy. The numerical results
presented here support our conclusion made in [17,4,5] that the flow on (E is not strictly
viscometric and in general PH # 0, which indicates that the viscometric flow assumption
does contribute some error to the path integral PH and hence PHk # PH. This is especially
true for the Poiseuille base flow.

However our numerical results also indicate that the error introduced by the viscomet-
ric flow assumption, namely the term PH, is not significant for the Couette base flow. As
a matter of fact, this error is very small for the second-order fluid (about 2% at De - 0.2
[4]); is relatively small for the Maxwell [4] and for J-S fluids at low Deborah numbers (e.g.
ab ,ut 6% at De = 0.25 for J-S fluid); and is growing with increase of De (e.g. the error
of PJ, is about 13% at De = 1.0 for a J-S fluid). The point is that although the effect of
non-viscometric flow on Tq, i.e. the term '1 _E"-22) is in general non-zero on T, its
contribution to the path integral, PH defined by (3.8), may be negligible for Couette
base flow in some cases. This suggests that the viscometric flow assumption made by
Higashitani & Pritchard in [11] is indeed a good approximation for Couette base flow
of second-order fluid, it perhaps can also be considered as a reasonable approximation
for Maxwell & J-S fluids at low Deborah numbers. However our numerical results
show that the viscometric flow assumption is not valid for the Poiseuille base flow.
These results support to some extent the Higashitani and Pritchard's original work in [11],
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which they clearly intended to apply to Couette base flow. Unfortunately, by neglecting
the error terms without estimating them first, they were unable to observe the fortuitous
error cancellation phenomenon in the MHPR.

The numerical evaluation of PH turned out to be the most difficult part of the work
i8T ~ By uiga lbrt

because it involves the streamwise stress gradient term, -" I using an elaborate
numerical procedure we have made some success in evaluating PH2. Our numerical results
of PH2 do have the same sign and the same order of magnitude as those of PH, which does
indicate the possibility of the expected error cancellation. However we are still not able to
numerically verify the error cancellation relation, PH = PH' + PH2, to a satisfactory degree
of accuracy. Since the values of PH are checked by relation PH = PH' + PH, we suspect the
accuracy of PH is probably still not good enough. The problem is due to the FLUCODE's
piecewise-constant FEM stress field which is actually not differentiable in the classic sense.
The possible resolution for this problem is to use higher-order FE element with continuous
pressure & stress field, or to turn to some other semi-analytical-type methods. This part
of work will be pursued in future.

A partial self-cancellation phenomenon in the HPBL path integral on the interval
from the bottom of the hole to the center of channel has been observed numerically for
the Poiseuille base flow of the J-S fluid. This indicates that the effective contribution to
HPBL integral (4.3) only comes from the part between the channel center and top wall
where the flow is essentially viscometric. Our observation agrees with what reported by
Baird et al in [22]. However this partial self-cancellation phenomenon does not happen to
Couette base flow.

As we observed from the numerical results, the values of directly computed hole pres-
sure difference -('2 - T2a2) based on mesh 5 are still not good enough. We believe this is
due to the slow, possibly fractional-order convergence rate of the thrust t '2 at the bottom
of the hole discu-oed in [4]. One the other hand, the posterior error analysis base on the
multi-mesh extrapolation tells us that the values of -(T22 - T22 ) will indeed be very
close to the analytical prediction (3.14) when Ax --+ 0. However in order to numerically
obtain the desired values of -(T2 2 - T22 ) the FE mesh must be extremely fine, which is
propably not achievable in practice, because of the slow convergence rate for -T2a 2 . We be-
lieve that previous attempts to compare direct computations of -(T2 2 - T22) to the HPBL
predictions (Bernstein & Malkus [24], Bernstein, Malkus & Olsen [25], Malkus quoted in
[16]) were inaccurate due to the very slow convergence of T '2 with mesh refinement and not
a failure of HPBL. We have suggested severial ways of improving the numerical predictions
of FLUCODE:

a) Using pressure smoothing scheme with boundary node correction as standard
practice.

b) Using multi-mesh extrapolation.

Or

c) Using the HPBL path integral in place of direct thrust calculations.

From Table 4 we can see that the error of predicted N1 by means of numerically
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simulated hole pressure measurement is less than 10% when De < 1. This supports
the conclusion made by Malkus & Webster in [9] that N1 can be predicted via PH to
working rheological accuracy.

According to our computational experience, by setting the Pa-norm convergence crite-
rion (4.1), the accuracy of hole pressure of FEM solutions can be improved to some extent.
This criterion is recommended for the hole pressure calculations using FLUCODE.
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Figure 3. Crudest FEM mesh, i.e. the Mesh 1 of the four-mesh group for
multiple mesh extrapolation. The other three finer FEM grids are obtained
by even subdivision of this mesh in each co-ordinate direction.
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Figure 4. The Mesh 5 used for numerical evaluation of MHPR. This
is the finest mesh we used with 2440 quadrilateral macro elements and
2583 nodes.
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Figure 5.

Hole pressure error for plane Poiseuille base flow of a modified J-S fluid
(e = 1/8). Numerical simulation vs. analytical prediction. The solid
curve is the analytical predction calculated by (3.14); A is the extrap-
olated values of PH based on meshes 1, 2 and 3; * is computed by the
HPBL path integral (4.3) based on mesh 5.
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Figure 6.

PH/N' for plane Poiseuille base flow of a modified J-S fluid (e = 1/8).
Numerical simulation vs. analytical prediction. The solid curve is the
analytical predction calculated by (3.14); A is the three-mesh extrapola-
tion result using meshes 1, 2 and 3; * is the HPBL path integral result
(4.3) based on mesh 5.
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Figure 7.
Variations of the HPBL path integral, PH(y), along the hole centerline L. (a)
PH(y)/PH(qb ) vs. y for Poiseuille base flow at De = 0.25; (b) PH(y)/PH(qb )

for Couette base flow at De = 0.25. Note that y = -2.5 is the bottom of
pressure-hole and y = 0 is the center of channel.
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Figure 8.

Numerical predictions of viscosity at e = 1/8, using the three-mesh ex-
trapolations of FEM solutions. The solid curve is the analytical function
of viscosity i7(i') = e + 1/[I + (1 - a2 )T2 j 2j; and e is the value predicted
by equations (4.6) & (4.7).
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Figure 9.

Predictions of N, based on the simulated hole pressure measurement,
using the J-S model and (4.9). The solid curve is the analytical solution;
e is the predicted value using PH = HPBL path integral; A is predicted
by using extrapolated PH based on meshes 1, 2, 3.
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(a) PH Extrapolated by Meshes 1, 2, 3

De 7w PH Error
0.10 .094783 .0044718 .0045146 0.96%
0.25 .23661 .027226 .026023 -4.42%
0.50 .47350 .10060 .096237 -4.34%
0.75 .71227 .20053 .19126 -4.62%
1.00 .95788 .30684 .28034 -8.64%

(b) Raw PH from Mesh 5

De w P PH Error
0.10 .094783 .0044718 .0034648 -22.52%
0.25 .23661 .027226 .022362 -17.87%
0.50 .47350 .10060 .085607 -14.90%
0.75 .71227 .20053 .16776 -16.34%
1.00 .95788 .30684 .24855 -19.00%

(c) HPBL Prediction Based on Mesh 5

De -, p HPBL Error
0.10 .094783 .0044718 .0045526 1.81%
0.25 .23661 .027226 .027484 0.95%
0.50 .47350 .10060 .098875 -1.71%
0.75 .71227 .20053 .19179 -4.36%
1.00 .95788 .30684 .28474 -7.20%

Table 1.
Numerically-simulated hole pressure for plane Poiseuille base flow of
a Johnson-Segalman fluid (Q = 1/8) by FEM solutions. jo, denotes
the perturbed shear strain rate at q2 and its value is obtained through
three-mesh extrapolation based on meshes 1, 2, 3. Pk is the analytical
prediction computed via equation (3.14) with jo = •0*. HPBL is the
path integral prediction (4.3) based on FEM solutions of mesh 5.
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Table 2.

Numerical Evaluation of MHPR (3.2) in Path Integral Form
and Error Cancellation for Couette Base Flow of J-S Fluid

(e = 1/8, De = 0.25, 0.5, 1.0)

Deborah Number De = 0.25 De = 0.5 De = 1.0

F.E. Mesh Mesh 5 Mesh 5 Mesh 5

F.E. Number NE= 2440 NE= 2440 NE= 2440

F.E. Size Ax = 0.025 Ax = 0.025 Ax = 0.025

-(T22Ib- a21.) .020291 .081376 .27466

Analytical PH .032302 .11723 .33530

PH .034449 .12817 .37792

(PH- PH)/PH 6.65% 9.33% 12.71%

-.0042013 -.018105 -.073182

Ph + PH .030248 .11006 .30473

error of PHJ+Pk -6.36% -6.12% -9.11%

PH - 2  9T 12 q2 .031980 .11328 .31762

error of PH --1.00% -3.37% -5.27%
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Table 3.

Numerical Evaluation of MHPR (3.2) in Path Integral Form
and Error Cancellation for Poiseuille Base Flow of J-S Fluid

(e - 1/8, De = 0.25, 0.5, 1.0)

Deborah Number De = 0.25 De = 0.5 De = 1.0

F.E. Mesh Mesh 5 Mesh 5 Mesh 5

F.E. Number NE= 2440 NE= 2440 NE= 2440

F.E. Size Ax = 0.025 Ax = 0.025 Ax = 0.025

-(T 22 1b- T 22 1a) .022362 .085857 .24855

Analytical PH .027226 .10060 .30684

PH' .053771 .20474 .64770

(PH1 - PH)/PH 97.50% 103.52% 111.09%

PH -.030839 -.11727 -.40571

P + P .022932 .087470 .24198

error of P1+P -15.77% -13.05% -21.14%

PH q 2T= 2 f dq 2  .027484 .098875 .28474

error of PH +0.95% -1.71% -7.20%
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Using a, and PH "2 T 2 q 2

De 4"0 ( N predicted Error

0.175 0.16570 0.05437 0.05434 -0.06%

0.375 0.35506 0.24118 0.23177 -3.90%

0.625 0.59289 0.62405 0.58769 -5.83%

0.875 0.83508 1.11484 1.02677 -7.90%
Using ao and PH j 2T12 ;'a dq 2

De, N'°Y, ) Nredicted Error

0.175 0.16570 0.05437 0.05435 -0.04%

0.375 0.35506 0.24118 0.23052 -4.42%

0.625 0.59289 0.62405 0.57168 -8.39%

0.875 0.83508 1.11484 0.98559 -11.59%

Table 4.

Comparison of predicted N, with the analytical solution N,(4 ° ) for Poiseuille
base flow of J-S fluid. Here "o4 and aO are the disturbed wall shear-strain-
rate and total shear stress on ; aw is the undisturbed total wall shear stress;

b

PH = q N T' I dq2 is the HPBL prediction in path integral form; Npredicted
q' 2t12 -9q2 '2' 1

is computed via (4.9) by using aw & PH and auo & PH, respectively.
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